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Abstract: A first-order seven-parameter theory of plates undergoing finite rota-
tions is developed. The precise representation of large rigid-body motions in the dis-
placement patterns of the plate elements is considered. The fundamental unknowns con-
sist of six in-plane and transverse displacements of the face planes and an additional
transverse displacement of the midplane. Because of thickness stretching the 3D equa-
tions of Hooke's law are utilized. However, no thickness locking can be observed in the
proposed plate model. This is demonstrated by analytical and numerical studies of the
isotropic plate bending.

1. Introduction

One of the main requirements of the modern plate theory that is intended for the
general finite element formulation is that it must lead to strain-free modes for arbitrary
rigid-body motions [1, 2]. The adequate representation of rigid-body motions is a nec-
essary condition if the element is to have the good accuracy and convergence proper-
ties. Therefore, when an inconsistent non-linear plate theory is used to construct any
finite element, erroneous straining modes under arbitrarily large rigid-body motions
may be appeared. This problem has been studied for the finite rotation Timoshenko
beam [3], Mindlin plate [4] and Timoshenko-Mindlin-type shell [5, 6] theories. Such
sort of theories may be treated as the first-order four-parameter beam and six-parameter
plate/shell models and, therefore, so-called thickness locking [7, 8] can occur.

Herein, the more general study on the basis of the finite rotation first-order seven-
parameter plate theory taking into account the transverse normal deformation response
is considered. As unknowns six in-plane and transverse displacements of the face
planes of the plate and an additional transverse displacement of the midplane are cho-
sen. Such choice of displacements gives the possibility to deduce non-linear strain-
displacement relationships, which are objective, i.e., invariant under all rigid-body mo-
tions. It should be mentioned that in some works (see e.g. [9]) developing the solid-
shell concept, displacement vectors of the face and middle surfaces are also utilized.
But in our first-order plate theory selecting as unknowns the displacements of the face
and middle planes has a principally another mechanical sense and allows one to deduce
non-linear strain-displacement relationships with aforementioned attractive properties.

As has been already said the six-parameter plate model on the basis of the com-
plete 3D constitutive equations is deficient because thickness locking occurs. This is
due to the fact that the adopted linear displacement field in the thickness direction re-
sults in a constant transverse normal strain, which in turn causes artificial stiffening of
the plate element in the case of non-vanishing Poisson's ratios. To prevent thickness

518 ISSN 0136-5835. Bectauk TI'TY. 2007. Tom 13. Ne 2B. Transactions TSTU



locking at the finite element level the enhanced assumed strain method [7] can be ap-
plied. In order to circumvent a locking phenomenon at the mechanical level and compu-
tational one as well, the 3D constitutive equations have to be modified [6, 10]. How-
ever, the use of complete 3D constitutive laws within the plate analysis is of great im-
portance for engineering applications. Thus, the first-order seven-parameter plate model
is best suited for this purpose because such a model is optimal with respect to a number
of degrees of freedom employed.

2. Strain-displacement relationships

Let us consider a plate of the uniform thickness /4. The plate may be defined as a

3D body bounded by two planes S~ and ST, located at the distances d~ and d*
measured with respect to the reference plane S, and the edge boundary cylindrical sur-
face Q) that is perpendicular to the reference plane. Let the reference plane S be re-
ferred to the Cartesian coordinate system x; and x, . The x; axis is oriented along the

normal direction. The initial and current configurations of the plate are shown in Fig. 1.
The position vectors of the arbitrary point in the plate body and points belonging
the face and middle planes can be expressed as
R=NR +N'R%, (1)
RI = X1€; +Xxey) + dIe3 (I =— M, +), (2)

- _ l + + _ l g M _ l - +
N —h(d x3), N —h(x3 d ) d —2(d +d ) 3)
where N* (x3) are the linear through-thickness shape functions of the plate; d M is the

distance from the reference plane to the middle one.

Fig. 1. Initial and current configurations of the plate
The position vectors of points in the plate in its current configuration are given by
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R=LR +MRM+L'R", (4)
R'=R'+u'  (1=-M,+), (5)
L‘=N‘(N‘—N+), M =4N~N*, L+=N+(N+—N‘), (6)

where L*(x3) and M (x3) are the quadratic through-thickness shape functions of the

plate; u* (x1,x,) and uM (x1,x,) are the displacement vectors of the face and middle
planes defined as

u'=>ule;,  (I=— M, +). (7

The components of the Green-Lagrange strain tensor can be written as

281']' = ﬁ,iﬁ,j - R,iR,j’ (8)

where the abbreviation ( )l. implies the partial derivatives with respect to coordinates

x; and indices i, j take the values 1, 2 and 3. In the following developments Greek
indices o, B running from 1 to 2 are also utilized.

Substituting derivatives of position vectors (1) and (4) into the 3D strain-
displacement relationships (8) and assuming that quadratic and higher-order terms in
the thickness direction are negligible, one obtains

2e; =N g; +N'e, )

where ¢; and e;; are the strains of the bottom and top planes expressed as

Zsiﬁ = ufxeB +uf3ea +u,iauf3, (10)
28§3 = (B i%wjea +u7ia (e3 +Bi%w},

4 4
265 = | Pr—w || 2e5+BE—w |,
€33 (ﬁ hw)( e3+p hwj

where
ﬁ=%(u+—u_), w=u-uM, ﬁ:%(u_+u+). (11)

It is seen that instead of the midplane displacement vector uM the convenient differ-
ence displacement vector w is involved into a set of unknown functions. Thus, a set of

. . —_ +
fundamental unknowns consists of displacement vectors u” , u* and w .

Remark 1. It can be verified that approximate and exact components of the
Green-Lagrange strain tensor satisfy the following linking conditions:

+ exact [ s+ +

Sl.'i(d ):Sz_'f (d ):glfi'

As pointed out previously the exact components sf;‘a“ depend on the quadratic and

520 ISSN 0136-5835. Bectauk TI'TY. 2007. Tom 13. Ne 2B. Transactions TSTU



higher-order terms in the thickness direction. This remark is illustrated by means of Fig. 2.

Proposition 1. The Green-Lagrange strains (9) are invariant under large rigid-
body motions.

Proof. An arbitrarily large rigid-body displacement can be defined by
(0N A+ (@-T1)R, (12)

where A is the constant displacement (translation) vector; I is the identity matrix; ®
is the orthogonal rotation matrix. In particular, rigid-body displacements of the face and
middle planes are

[\Rigid |
() =A+(@-DR" (1=- M, +). (13)
Allowing for Eqgs (11) and (13), one can verify that
o Rigid Rigid
(ﬁ)ngld:%(u_+u+) oA (@-1)RM = (uM) e
Thus,
- Rigid
(W)ngldz(ﬁ—uM) 181 =0 (14)
and
. Rigid
(B)ngld =De; —e3, (ui:x) lgl =De, —e,. (15)

It can be shown by using Eqs (14) and (15) that strains (10) are all zero in a general
large rigid-body motion

Rigid
n

2(8;].) = (e;)(®e;) - eie; =0. (16)
This conclusion is true because an orthogonal transformation retains the scalar product

of vectors. So, due to Eq. (16) the Green-Lagrange strains (9) exactly represent arbitrar-
ily large rigid-body motions. [l

x} A

d+

&5 e}
Fig. 2. Distribution of approximate and exact components
of the Green-Lagrange strain tensor through the thickness
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Further we introduce the basis assumption for the proposed plate model. The in-
plane displacements are considered to be linear in the thickness direction, whereas the
transverse displacement is parabolic through the thickness of the plate [11], that is,

W = wzes. (17)

Substituting displacements (7) in strain-displacement relationships (10) and taking into
account the adopted assumption (17), we derive the following strain-displacement rela-
tionships of the first-order seven-parameter plate model:

2 + _ t + + + + + + + 18
Eup = Ug,p T UR o U gUI R+ U Gl R+ U3 GUIR, (18)

+ + + + o+ 4
2e53 =Py 13 TP +PoUs o U3 ([33 izwsja

4 1, o\ 1 4 Y
+
€33 =P i;% +5(B1 +[32)+5(B3iZW3j ,

where
By =— (" —u7)- (19)

As we shall see later, strains (9) in conjunction with Eqs (18) and (19) provide a
very simple and convenient way to overcome thickness locking in the case of utilizing

P and

the complete 3D constitutive equations because only seven displacements u; , u;”

wjy are introduced.

3. Governing equations of plates

The equilibrium equations of the plate can be obtained by applying the principle of
the virtual work. Herein, for simplicity we restrict ourselves to the geometrically linear
effects. As a result, one derives seven equilibrium equations

Tiy+Tp =0 —pi s (20)

2 - 4
My +My; o _ZT;G =—p; —Pi > (21)
M55 =0, (22)

where p; and p; are the tractions acting on the bottom and top planes in x; direc-
tions; 7;; and M j are the stress resultants defined as

ij
Ty=Hy+Hj, My=Hj-Hj. 23)
d+
+ +
HU = I GUN dX3.
d-

The natural boundary conditions for the rectangular plate at edges x =0 and
x; =a will be
d+
(B 1 Jouf =0, Hy = [ gV, (24)
s
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d+
H1*36W3 = O, H1*3 = J‘ q3LMdX3, (25)
ps
where g; are the tractions acting on these edges in x; directions. The boundary condi-
tions at edges x, =0 and x, =b can be written in a similar way.

It seems surprising that Eqs (22) and (25) must be fulfilled regardless of loading
and boundary conditions. This is due to the fact that all derivatives of the difference
displacement w; have been omitted in strain-displacement relationships (18), in order,
first, to arrive at their simplest form and, second, to utilize the complete 3D constitutive
equations. However, Eq. (22) can be easily satisfied in the case of the uniform distribu-
tion of transverse normal stresses in the thickness direction. Really, substituting
633 =0 in Eq. (23) and integrating, one finds

_ 1
Hyy = H3, 2550}1

and, therefore, the equilibrium equation (22) is satisfied exactly.

It is interesting to note that in some works ([6, 10], among others), which develop
six-parameter shell models, the transverse normal stress is also assumed to be constant
in the thickness direction. The constant 33 assumption is one of the best thickness
locking remedies in a six-parameter shell formulation but leads to the modification of
3D constitutive equations. It should be mentioned that Eq. (22) is also discussed in [7],
where has been developed an efficient seven-parameter shell formulation on the basis of
the enhanced assumed strain concept. In this work it is said that in the finite element
formulation the last equilibrium equation (22) is carried out in a weak sense.

In regards to the boundary condition (25), one can conclude that a displacement
wy 1s not a subject to any kinematic constraints. As a result, the transverse normal

strain is not vanishing through the thickness at clamped edges. The same problem arises
in all seven-parameter shell models (see e.g. [7, 9, 12]). However, this contradiction is
not principal because in the finite element formulation the difference displacement wy

is condensed on the element level. In practice, this implies that instead of the midplane
displacement u%vl the average displacement 3 should be employed.
In isotropic elasticity the 3D constitutive equations are written as

Gij :}\,61-]-(811 +€yy +833)+2G8ij, (26)
- VE £
(1+v)(1-2v)’ 2(1+v)’

where £ and G are Young's and shear moduli; v is Poisson's ratio; A is a Lamé pa-
rameter; 61-]- is Kronecker's delta.

Using Eqgs (18), (23) and (26) in equilibrium equations (20) — (22), one derives the
following differential equations in terms of generalized displacements i;, B; and wj :

2(1=v) i gy +(1=2v)iay 5 +itp 15 +2VB3; =0, (27)

2(1—V)L_lz722 +(1—2V)172’11 +L_ll’12 +2VB3’2 = 0, (28)
12(1-v),_

2Bp11+(1=V)Broa +(1+V)Bayi2 —%@3,1 +B;)=0, (29)

ISSN 0136-5835. Bectauk TI'TY. 2007. Tom 13. Ne 2B. Transactions TSTU 523



12(1-v),_
282,20 +(1=V)Bo1 +(1+V)By 12 _—(hz )(“3,2 +B,)=0, (30)
_ Sl
Ay +l31,1+l32,2—a(173 Ps), (€29
24v _ _ I-v 6 _
AB ——(u +iy 5 +—P )z—— p3 +p5 ), (32)
3 (1—2V)h2 L1 2,2 v 3 Ghz( 3 3)
_ vh? _ |
W3 —m{AL@ +a(p3 —p3 ):|, (33)
where A is the Laplace operator and
_ 1y 1 . _
uj :5(”:' +”z+) B :Z(”;_”i ) L (34)

Remark 2. The difference displacement w; does not appear in equilibrium equa-

tions (27) — (32) because this one has been eliminated with the help of Eq. (33), which
explicitly defines wj. It is important to note that Eqs (27) — (32) coincide with corre-

sponding equilibrium equations of the six-parameter plate model based on the equiva-
lent constant 633 assumption [13].

Invoking an approach [11], we introduce new functions  and ¢ such that

Br=%1+0,2, Br=x2-9, (35)
Using Eq. (35) in equilibrium equations (29)—(31), one obtains
_ h? o - EW®

DAAuy = Alps —=p3|-p3+p3, D=———, (36)

6(1-v) ( ) 12(1-v?)

12
A(P:h_Z(p’ (37)
W _ _ (V)R o

=——— Ay -y +———— - . 38
X 6(1-v) 3 U3 3(1_V)E(P3 P3) (38)

So, we have four governing differential equations (27), (28), (32) and (36) in terms of
generalized displacements u#; and 5. It should be mentioned that Eq. (37) describes

the well-known Reissner's edge effect [14].

4. Numerical example

A simply supported rectangular isotropic plate, depicted in Fig. 3, is subjected to
the sinusoidally distributed pressure load

+ . T . TXy _
P3 = posin—=sin— =, » =0,
a

where a and b are two in-plane dimensions of the plate.
We will search an exact solution of the problem in the following form:
— — ) . TXp — — . T 1~%)
1 =Upo COS—SIHT, Uy =UppSIN——COS——,
a a

b

- — M _+ - - M 4 LT LT
(”3 Uz, Uz, U3 ’[33)2(”303”303”30’ ”303330)5111751117-
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///
// 7 W
N a
X, i b i
Fig. 3. Rectangular plate under sinusoidal loading:
a=b=3; E=107;v=03p} = pysin—Lsin —2
a b
Table 1
Dimensionless transverse displacements in a center of the square plate
a / h Displacement Elasticity FPT7 FPT6M CPT FPT6
Uy 3,882 4,002 4,002 2,803 3,487
l73 4,161 4,266 4,266 2,803 3,751
3
U;vl 4,309 4,595 4,266 2,803 3,751
U;r 4,440 4,530 4,530 2,803 4,015
Uy 2,912 2,932 2,932 2,803 2,417
U, 2,915 2,934 2,934 2,803 | 2,420
10
Uévl 2,942 2.964 2,934 2,803 2,420
Uy 2,917 2,937 2,937 2,803 2,422
Uy 2,815 2,817 2,817 2,803 2,302
(73 2,815 2,817 2,817 2,803 2,302
30
Uév[ 2,818 2,821 2,817 2,803 2,302
U;r 2,815 2,817 2,817 2,803 2,303
Uy 2,804 2,804 2,804 2,803 2,289
l73 2,804 2,804 2,804 2,803 2,289
100
Uy 2,804 2,804 | 25804 | 2,803 | 2289
U3+ 2,804 2,804 2,804 2,803 2,289
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After trivial calculations, one finds

ii30 = (1+©)v39, 13 =[1+(1+0,75v) O3,

2
6(1-v) P + 1
Byo=—"""—5— w30 = ighﬁsoa

’()30 =, = =
®2

Ph » (1+V)p0 o n2(1+a2/b2)
3(1-v)E” 6(1=v)(ath)?

where vy is the transverse displacement in a center of the plate for the classical plate
theory (CPT).

Table 1 lists dimensionless transverse displacements

3
- M M 100Eh
(U3 U3, Us ’U;)Z(”m’ U30, 430> “;0)—4

DPod
in a center of the square plate by using the present first-order plate theory (FPT7) for
various values of the slenderness ratio a/#. A comparison with exact solutions of the

elasticity theory [15], CPT [16] and the first-order six-parameter plate theory (FPT6) [13],
based on the full constitutive equations, and the first-order six-parameter plate theory
(FPT6M) [13], based on the constant 33 assumption, is also given. It is seen that the

FPT6 solution demonstrates significant thickness locking, whereas FPT7 and FPT6M
ones perform well. Let us pay attention to equal values of the average displacement [73
for both FPT7 and FPT6M solutions, and excessive values of the midplane displace-
ment Uévl predicted by the FPT7 solution for thick plates (see underlined numbers in
Tabl. 1). As has been pointed out already, this inconsistency is not principal for the pro-
posed seven-parameter plate model, since for practical implementations instead of uévl

the more appropriate average displacement 5 can be used.

5. Conclusions

The simple non-linear strain-displacement equations of the first-order seven-
parameter plate model have been developed. These equations are attractive because
they are objective, i.e., invariant under arbitrarily large rigid-body motions. Therefore,
they may be used for the formulation of efficient plate elements undergoing finite rota-
tions. However, the practical use of these equations requires the deep understanding of
basis hypotheses underlying the proposed plate theory, in particular, the constant o33

assumption. For this purpose, the geometrically linear bending of the isotropic plate is
studied in detail.

References

1. Cantin, G. Strain displacement relationships for cylindrical shells / G. Cantin //
AIAA Journal. — 1968. — Vol. 6. — P. 1787-1788.

526 ISSN 0136-5835. Bectauk TI'TY. 2007. Tom 13. Ne 2B. Transactions TSTU



2. Dawe, D.J. Rigid-body motions and strain-displacement equations of curved
shell finite elements / D.J. Dawe // International Journal of Mechanical Sciences. —
1972. - Vol. 14. — P. 569-578.

3. Kulikov, G.M. Non-conventional non-linear two-node hybrid stress-strain
curved beam elements / G.M. Kulikov, S.V. Plotnikova // Finite Elements in Analysis
and Design. — 2004. — Vol. 40. — P. 1333-1359.

4. Kulikov, G.M. Finite deformation plate theory and large rigid-body motions /
G.M. Kulikov, S.V. Plotnikova // International Journal of Non-Linear Mechanics. —
2004. — Vol. 39. — P. 1093-1109.

5. Kulikov, G.M. Strain-displacement relationships that exactly represent large
rigid displacements of a shell / G.M. Kulikov // Mechanics of Solids. — 2004. — Vol. 39. —
P. 105-113.

6. Kulikov, G.M. Geometrically exact assumed stress-strain multilayered solid-
shell elements based on the 3D analytical integration / G.M. Kulikov, S.V. Plotnikova //
Computers & Structures. — 2006. — Vol. 84. — P. 1275-1287.

7. Bischoff, M. On the physical significance of higher order kinematic and static
variables in a three-dimensional shell formulation / M. Bischoff, E. Ramm // Interna-
tional Journal of Solids and Structures. — 2000. — Vol. 37. — P. 6933-6960.

8. Sze, K.Y. Three-dimensional continuum finite element models for plate/shell
analysis / K.Y. Sze // Progress in Structural Engineering and Materials. —2002. — Vol. 4. —
P. 400-407.

9. Parisch, H. A continuum-based shell theory for non-linear applications /
H. Parisch // International Journal for Numerical Methods in Engineering. — 1995. — Vol.
38.—P. 1855-1883.

10. Sze, K.Y. An eight-node hybrid-stress solid-shell element for geometric non-
linear analysis of elastic shells / K.Y. Sze, W.K. Chan, T.H.H. Pian // International
Journal for Numerical Methods in Engineering. — 2002. — Vol. 55. — P. 853-878.

11. Kulikov, G.M. Refined global approximation theory of multilayered plates and
shells / G.M. Kulikov // Journal of Engineering Mechanics. — 2001. — Vol. 127. —
P. 119-125.

12. Sansour, C. Families of 4-node and 9-node finite elements for a finite deforma-
tion shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain
elements / C. Sansour, F.G. Kollmann // Computational Mechanics. — 2000. — Vol. 24. —
P. 435-447.

13. Kulikov, G.M. Equivalent single-layer and layer-wise shell theories and rigid-
body motions — Part II: Computational aspects / G.M. Kulikov, S.V. Plotnikova //
Mechanics of Advanced Materials and Structures. — 2005. — Vol. 12. — P. 331-340.

14. Reissner, E. On the theory of bending of elastic plates / E. Reissner // Journal
Mathematics and Physics. — 1944. — Vol. 23. — P. 181-191.

15. Vlasov, B.F. On the bending of rectangular thick plate / B.F. Vlasov // Trans.
Moscow State University. — 1957. — Vol. 2. — P. 25-31 (in Russian).

16. Timoshenko, S.P. Theory of Plates and Shells, 2nd ed. / S.P. Timoshenko,
S. Woinowsky—Krieger. — McGraw-Hill, New York, 1959.

K 7-mapameTpuyeckoii TeOpHH NJIACTHH NMEPBOro MOPAAKa

I''M. Kyiukos
Kageopa «Ilpuxnaonaa mamemamura u mexanuxay», I OY BIIO «TI'TY»

KuioueBble cjioBa u (pa3pl: Goibline MepeMenieHns] TBEPAOrO Teja; KOHEed-
HBIE IOBOPOTHI; TEOPHS IIACTHH IEPBOTO MOPSIKA.
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AHHOTanMsi: PasBura 7-mlapaMeTpHueKas TEOPUS IUIACTUH IIEPBOTO IMOPSJIKA,
TO/IBEP>KEHHBIX KOHEYHBIM TTOBOPOTaM. PaccMOTpeHO TOYHOE TpeAcTaBIeHNe OOMBIINX
NepeMeIeH i TUIACTUHBI KaK JKeCTKOro Tena. B kauecTBe MCKOMBIX (DYHKIMI BHIOPAHBI
MIECTb TAHTCHUUAJIbHBIX W HNOINCPCUHBIX nepeMemeHI/lﬁ JIMLIEBBIX IUIOCKOCTEN U 10~
MOJIHUTENBHO IMONEPEYHOE NepeMelleHre CpeJUHHONW IIocKocTU. BcenenctBue yuera
00KaTus TUTACTUHEI TIO TOJIIMHE UCIOJIh30BAHBI TPEXMEPHBIC YPaBHEHU 3aKoHa [yka.
OpHako, TpeAyoKeHHass MOJISNb IUTACTHHBI HE TOABEP)KEHA 3aIHPAHMIO 110 TOJIIUHE.
DT0 JEMOHCTPUPYETCS Ha MPUMEPE U3rHda M30TPOIHOM IJIACTUHBI ¢ UCIIOJIb30BAaHHEM
AHAIUTUYECKUX U YUCIEHHBIX METOJOB.

Zur 7-parametrischen Theorie der Platten der ersten Ordnung

Zusammenfassung: Es ist die 7-parametrische Theorie der Platten der ersten
Ordnung, die den endlichen Wendungen unterworfen sind, entwickelt. Es ist die genaue
Vorstellung der grossen Umstellungen der Platte wie des harten Korpers untersucht. Als
gesuchte Funktionen sind sechs Tangens- und Querumstellungen der Gesichtsebenen
und die zusitzlich querlaufende Umstellung der Mittelebene gewdhlt. Infolge der
Kontrolle der Plattenverformung nach der Dicke sind die dreidimensionalen
Gleichungen des Hooke-Gesetzes verwendet. Doch, ist das angebotene Modell der
Platte dem Sperren nach der Dicke nicht unterworfen. Es wird auf dem Beispiel der
Biegung der Isotropplatte mit der Nutzung der analytischen und numerischen Methoden
demonstriert.

Vers une théorie 7-paramétrique des plaques du premier ordre

Résumé: Est développée la théorie 7-paramétrique des plaques du premier ordre.
Est examinée une représentation exacte sur les grands déplacements de la plaque
comme un corps dur. En qualit¢é des fonctions recherchées sont choisis six
déplacements tangentiels et transversaux des plans de face et comme supplément —
déplacement transversal du plan médian. Par suite du corroyage de la plaque par
I’épaisseur sont utilisées les équations de trois mesures de Hooke. Néanmoins, le
modéle proposé n’est pas soumis au blocage par 1’épaisseur. Cela est montré a
I’exemple du pliage de la plaque isotrope avec 1’emploi des méthodes analitiques et
numériques.

528 ISSN 0136-5835. Bectauk TI'TY. 2007. Tom 13. Ne 2B. Transactions TSTU



