Д.А. Прокин, В.М. Антонов

ВЛИЯНИЕ ВЛАЖНОСТИ НА ПРОЧНОСТНЫЕ И ДЕФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ

На несущую способность фундаментов большое влияние оказывают плотность ρ и влажность ω основания. Изменение этих параметров даже в небольших пределах приводит к росту или снижению прочности грунта в несколько раз. Очень важно знать оптимальное соотношение $\rho - \omega$, чтобы назначить наиболее эффективные размеры фундамента.

Исследования по определению оптимальной влажности и плотности грунтового основания проводились в лаборатории механики грунтов ТГТУ. В качестве основания использовался песок из Красненского карьера города Тамбова. В соответствии с [1] песок мелкий, степень неоднородности по Хазену $Cu = d_{60} / d_{10} = 2.8$ – песок однородный.

Оптимальную влажность песка ω_{opt} определяли на приборе стандартного уплотнения «Союздорнии» – СПГ-1М [2] (рис. 1) и в пространственном лотке (табл. 1), последовательно увеличивая влажность. Плотность грунта при разном числе ударов трамбовкой массой 15 кг определяли с помощью режущего кольца.

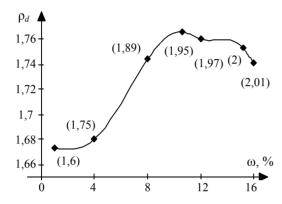


Рис. 1 Зависимость плотности скелета грунта от влажности по испытаниям на приборе «Союздорнии» (в скобках указана плотность грунта)

1 К определению оптимальной влажности грунта в лотках

Количество ударов трамбовки <i>п</i> по одному следу	Плотность скелета грунта ρ_d , г/см ³ , при влажности в процентах (%)			
	5	7	10	15
1	1,44	1,45	1,5	1,42
3	1,50	1,53	1,55	1,47
5	1,57	1,58	1,59	1,54
7	1,62	1,63	1,64	1,6
10	1,68	1,70	1,72	1,65

На приборе одноплоскостного среза были проведены испытания в соответствии с [3], по методике консолидированнодренированного среза при нормальных давлениях: 0,1; 0,2 и 0,3 мПа. Образцы были подготовлены объемным методом непосредственно в камере сдвигового прибора при постоянной плотности.

Во время проведения опытов сопоставлялись различные соотношения влажности и плотности песчаного основания без армирования и с армированием (сетка с ячейкой 1×1 см и диаметром стержней 2 мм), результаты представлены на рис. 2, 3.

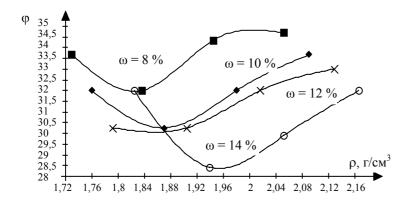


Рис. 2 Зависимость угла внутреннего трения от ω и ρ для неармированного основания

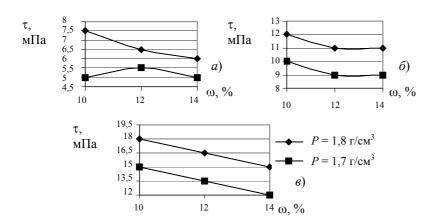


Рис. 3 Зависимость касательных напряжений от влажности ω для армированного основания при вертикальных напряжениях: $a-0,1~\mathrm{m\Pi a};~\delta-0,2~\mathrm{m\Pi a};~\epsilon-0,3~\mathrm{m\Pi a}$

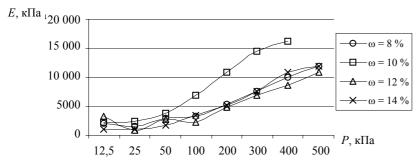


Рис. 4 Зависимость модуля деформации от давления при плотности $\rho = 1.8 \ \text{г/cm}^3$ для неармированного основания

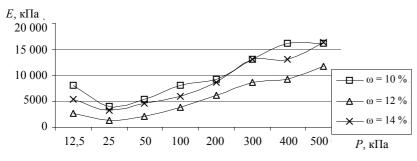


Рис. 5 Зависимость модуля деформации от давления при плотности $\rho = 1.8~\text{г/см}^3$ для армированного основания

На компрессионном приборе испытания были проведены в соответствии с ГОСТ 12248–96, нагрузки на рычаг прибора давались ступенями в 0,03; 0,06; 0,09; 0,12; 0,15 кH, что соответствовало давлению на грунт в 50, 100, 150, 200, 250 кПа. Каждая ступень нагрузки выдерживалась до условного затухания деформаций. Армирующий элемент располагался перпендикулярно оси действия вертикальной нагрузки, на глубине 0,5 от высоты образца. На рис. 4, 5 представлены результаты испытаний.

По результатам проведенных исследований была определена оптимальная влажность, которая для мелкого песчаного основания составила $\omega = 10$ %.

Список литературы

- 1 Джоунс, К.Д. Сооружения из армированного грунта / К.Д. Джоунс ; пер. с англ. В.С. Забавина ; под ред. В.Г. Меньшикова. М. : Стройиздат, 1989. 280 с.
 - 2 ГОСТ 22733-77. Грунты. Методы лабораторного определения максимальной плотности.
- 3 ГОСТ 12248-96. Грунты. Методы лабораторного определения характеристик прочности и деформируемости.