В.Л. Дедов, О.В. Евдокимцев, В.В. Леденев

ШТАМПОВЫЕ ИСПЫТАНИЯ СВЯЗНЫХ ГРУНТОВ НА ДЕЙСТВИЕ ПОВТОРНОГО СТАЦИОНАРНОГО И НЕСТАЦИОНАРНОГО НАГРУЖЕНИЯ

Опыты проводили в лаборатории механики грунтов ТГТУ на разрывной машине "Up-5053", переведенной в циклический режим работы. Грунт (тугопластичный суглинок), отобранный в Красненском карьере г. Тамбова помещался в лотке размерами $350 \times 350 \times 230$ мм с параметрами: $\rho_s = 2,68$ г/см³, $\rho = 2,00$ г/см³, W = 0,27, $W_p = 0,2$, $W_L = 0,35$, $I_l = 0,467$, $I_p = 0,15$, $I_l = 0,507$, $I_l = 0,15$,

Подготовка грунта в лотке осуществлялась по следующей методике. Грунт равномерными слоями толщиной 5 см укладывали в лоток. Затем на грунт устанавливали металлическую плиту размерами 330 \times 330 мм и нагружали ее с усилием, необходимым для уплотнения грунта до плотности $\rho = 2,00 \text{ г/см}^3$. Значение усилия было определено ранее опытным путем. Затем на грунт ставили штамп \varnothing 80 мм, устанавливали индикаторы часового типа ИЧ-10 на реперной раме, с помощью которых фиксировали вертикальные деформации. Далее начинали нагружение штампа с помощью разрывной машины "Up-5053". Грунт хранили в лотке, обеспечивая его герметичность, что сохраняло его постоянную влажность. Разрушающая вертикальная статическая нагрузка для штампа \varnothing 75 мм составила F_{pasp} = 1,6 кH (σ = 0,362 МПа).

Опыты на повторное нагружение проводили по следующей методике. Штамп нагружали вертикальным давлением $F_{\max} = \overline{\tau} F_{\text{разр}}$, где $\overline{\tau} = 0.6$; 0,7; 0,8. Затем их разгружали до нагрузки $F_{\min} = \rho_{\text{c}} F_{\max}$, где $\rho_{\text{c}} = 0$; 0,4; 0,8. Далее производили циклирование.

При принятых параметрах нагружения деформации от цикла к циклу возрастали с затухающей скоростью.

Влияние повторных нагружений оценивали коэффициентом $K_s = (\delta_s + \delta_c)/\delta_s$, где δ_c – вертикальное перемещение штампа при статическом действии нагрузки; δ_s – то же при циклическом с 1-го до *i*-го цикла. Величины коэффициентов K_s в зависимости от параметров N, τ , ρ_c даны в табл. 1 (τ = const – стационарный режим нагружения), табл. 2 (τ изменяется ступенчато на тридцатом и шестидесятом цикле – нестационарный режим нагружения).

1 Зависимости коэффициента K_s при испытаниях суглинка от числа циклов нагружения при постоянном значении $F_{\rm max}$.

№ цикла	K_s , Π	ри τ	= 0,6	K_s , п	ри τ	= 0,7	K_s , Π	— ри τ	= 0,8	
	$ ho_{ m c}$				ρ _c		ρ _c			
	0	0,4	0,8	0	0,4	0,8	0	0,4	0,8	

1	0	0	0	0	0	0	0	0	0
2	0,100	0,074	0,038	0,136	0,066	0,054	0,133	0,053	0,060
3	0,173	0,130	0,086	0,195	0,124	0,095	0,189	0,106	0,100
5	0,236	0,185	0,114	0,247	0,203	0,157	0,257	0,167	0,157
10	0,364	0,287	0,171	0,382	0,294	0,206	0,392	0,305	0,251
20	0,445	0,361	0,200	0,479	0,383	0,290	0,540	0,422	0,366
30	0,509	0,407	0,229	0,564	0,452	0,317	0,622	0,501	0,417
50	0,618	0,444	0,267	0,693	0,528	0,363	0,782	0,584	0,486
75	0,664	0,472	0,286	0,772	0,594	0,401	0,832	0,648	0,550
100	0,691	0,491	0,305	0,802	0,622	0,412	0,855	0,669	0,580

2 Зависимости коэффициента K_s суглинка от числа циклов нагружения при изменяющемся (ступенчато) значении $F_{\rm max}$.

$N_{\overline{0}}$	υ	$\rho_{\rm c} = 0$	$\begin{array}{c} \rho_c = \\ 0.4 \end{array}$	12	$\rho_{\rm c} = 0$	$\begin{array}{c} \rho_c = \\ 0.4 \end{array}$	No Hukub	12	$\rho_c = 0$	$\rho_c = 0.4$	12	$\rho_{\rm c} = 0$	$\rho_c = 0.4$
1		0	0	8,0	0	0	45	0,7	1,1 5	0,8 7		0,510	0,44
2		0,100	0,104		0,118	0,092	50		1,2 3	0,9 5	0,7	0,510	0,44
3		0,164	0,179		0,171	0,151	60		1,3 5	1,1 1		0,510	0,44
5	9	0,282	0,217		0,249	0,228	61	0,8	1,4 5	1,2 0	0,0	0,457	0,42 6
10	0,	0,382	0,330		0,391	0,308	62		1,5 1	1,2 7		0,457	0,42
15		0,454	0,387		0,475	0,385	63		1,5 5	1,3 3		0,457	0,42 6
20		0,483	0,425		0,584	0,471	65		1,6 6	1,3 9		0,457	0,42 6
30		0,557	0,453		0,665	0,546	70		1,8 9	1,5 2		0,457	0,42 6
31		0,764	0,557	0,7	0,510	0,441	75		2,0 2	1,6 2		0,457	0,42 6
32	7,0	0,791	0,594		0,510	0,441	80		2,1 4	1,7 9		0,457	0,42
33		0,827	0,632		0,510	0,441	90		2,2 6	1,9 2		0,457	0,42
35		0,891	0,687		0,510	0,441	100		2,3 4	1,9 6		0,457	0,42
40		1,02	0,755		0,510	0,441							

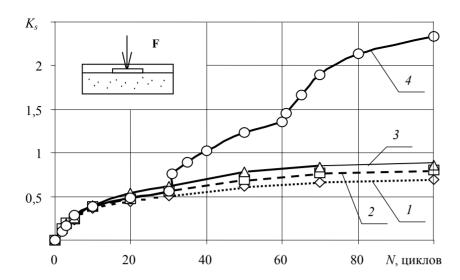


Рис. 1 Зависимости коэффициента K_s при испытаниях суглинка от числа циклов нагружения при постоянном значении F_{max} : $(1-\tau=0.6; 2-\tau=0.7; 3-\tau=0.8;)$ и ступенчатом $(4-\tau=0.6; 2-\tau=0.6; 2-\tau=0.7; 31...60 циклы); <math>\tau=0.8$ (61...100 циклы))

выводы:

- 1 ЦИКЛИЧЕСКАЯ СОСТАВЛЯЮЩАЯ ДЕФОРМАЦИЙ ПРИ СТАЦИОНАРНОМ РЕЖИ-МЕ НАГРУЖЕНИЯ РАСТЕТ ПРИ УВЕЛИЧЕНИИ УРОВНЯ НАГРУЖЕНИЙ, УМЕНЬШЕ-НИИ КОЭФФИЦИЕНТА АСИММЕТРИИ ЦИКЛА, УВЕЛИЧЕНИИ КОЛИЧЕСТВА ЦИКЛОВ НАГРУЖЕНИЯ.
- 2 Основные деформации происходят в первые 5...10 циклов нагружения, далее они резко замедляют свой рост.
- 3 При ступенчатом увеличении уровня нагружения (нестационарный режим нагружения) происходит значительный рост циклической составляющей деформаций (при увеличении уровня нагружения с 0.7 до 0.8-в 1.7 раза, при увеличении уровня нагружения с 0.8 до 0.9-в 3 раза)

СПИСОК ЛИТЕРАТУРЫ

- 1 Евдокимцев О.В. Влияние повторности нагружения на перемещения и несущую способность основания. Дис. ... канд. техн. наук, 2001.
 - 2 Леденев В.В. Основание и фундаменты при сложных воздействиях. Тамбов: ТГТУ, 1995. 400 с.

Кафедра "Конструкции зданий и сооружений"