Григорьев С. С.

АНАЛИЗ ТЕХНИЧЕСКОГО УРОВНЯ ГОРЕЛКИ ГАЗОВОЙ ГБм-1,2 ОАО «БКМЗ»

Работа выполнена под руководством к.т.н., проф. Трофимова А. В.

ТГТУ, Кафедра «Автоматизированные системы и приборы»

Управление качеством выпускаемой продукции расценивается в настоящее время, как решающее условие её конкурентоспособности на внутреннем и внешнем рынках. Одним из эффективных методов управления качеством продукции является систематический анализ технического уровня продукции.

Анализ технического уровня заключается в установлении соответствия продукции мировому или национальному уровням. Данный метод заключается в определении уровня качества продукции по комплексным показателям, то есть по совокупности единичных показателей [1].

В качестве анализируемого объекта выбрана продукция «Борисоглебского котельно-механического завода» - горелка газовая ГБм-1,2 [2]. Аналогами были выбраны: горелка газовая ОАО «Завод «Старорусприбор» ГБЛ-1,2Р и горелка газовая фирмы Weishaupt (Германия) тип G 7 исполнение LN [3,4]

Проведение анализа проходило в несколько этапов. На первом этапе сформирована модель качества продукции (рис. 1) на основании информации полученной путем экспертного опроса специалистов предприятия и анализа требований потребителей, предъявляемых к выпускаемой продукции. Модель качества состоит из трех основных групп показателей, включающих в себя наиболее важные для потребителей характеристики продукции. Для каждого из единичных показателей качества определены коэффициенты весомости методом экспертных оценок. Значения коэффициентов указаны в таблице 1.

На следующем этапе для каждого образца рассчитан обобщенный показатель качества по следующей зависимости:

$$Q_{o6} = \sum q_i c_i \quad , \tag{1}$$

где q_i – единичный относительный показатель качества,

 c_{i} -коэффициент весомости i-го показателя.

Относительный единичный показатель качества получается из соотношения:

$$q_{i} = \frac{P_{ni}}{P_{oi}} , \qquad (2)$$

где P_{ni} – показатель качества продукции, P_{ai} – показатель качества аналога.

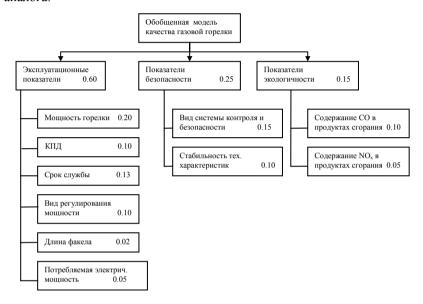


Рис. 1. Обобщенная модель качества газовой горелки

По зависимостям (2) рассчитаны значения относительных единичных показателей и (2) рассчитаны значения относительных единичных показателей и обобщенных показателей для каждого аналога и анализируемой продукции. Полученные результаты сведены в таблицу 1.

Исходя из полученных данных следует, что технический уровень анализируемой продукции соответствует национальному уровню, но уступает мировому. Это свидетельствует о необходимости проведения модернизации газовой горелки ГБм-1,2, т.к. ее отечественный аналог, выпускаемый ОАО «Завод «Старорусприбор», имеет близкий по параметрам технический уровень, а аналог фирмы Wieshaupt (Германия) превосходит данный уровень на 61 %, что отрицательно скажется на конкурентоспособности продукции выпускаемой на ОАО «БКМЗ»

Таблица 1. Анализ технического уровня горелки газовой ГБм-1.2

	Наименование горелок газовых и фирма-производитель					
Характеристики	ГБЛ-1,2Р ОАО «Старорусприбор»		тип G7 фирма Weishaupt		ГБм-1,2 ОАО «БКМЗ»	c_{i}
	числовые знач.	относит. знач.	числовые знач.	относит. знач.	числовые знач.	
Тепловая мощность, МВт	1,2	0,200	1,55	0,260	1,2	0,20
КПД, %	94	0,098	98	0,102	96	0,10
Потребляемая электрическая мощность, кВт	1,5	0,063	1,2	0,079	1,9	0,05
Длина факела, м	1,2	0,022	1,2	0,022	1,3	0,02
Вид регулирования. мощности	Плавн. рег. 40-100%	0,150	Плавн. рег. 20-100%	0,200	Трехступ. 0,40,100%	0,10
Срок службы, ч.	20000	0,144	26000	0,187	18000	0,13
Система контроля и безопасности	-	0,120	-	0,300	-	0,15
Стабильность характеристик	-	0,070	-	0,200	-	0,10
Содержание СО в продуктах сгорания, %	0,05	0,100	0,02	0,250	0,05	0,10
Содержание NOx в продуктах сгорания, мг/м ³	140	0,043	60	0,100	120	0,05
$Q_{oar{o}}$	-	0,971	-	1,610	-	1

Расчет значений единичных показателей полученных в ходе анализа технического уровня, представлен в виде диаграммы, иллюстрирующей преимущества и недостатки каждого из рассматриваемых образцов (рис. 2).

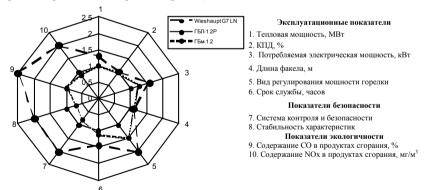


Рис. 2. Диаграмма качества горелок

Анализ диаграммы позволил установить приоритетные области улучшения показателей качества горелки газовой ГБм-1,2. Горелки типа G7 фирмы Weishaupt имеют наибольшее преимущество перед

отечественными образцами по показателям экологичности (п.9, п.10) и стабильности работы горелки (п.7 и п. 8), что обеспечивает конкурентное преимущество перед анализируемой продукцией.

По результатам анализа технического уровня горелки газовой ГБм-1,2 выпускаемой ОАО «Борисоглебский котельно-механический завод» сделаны следующие рекомендации:

- разработать комплекс мероприятий по усовершенствованию горелки газовой для обеспечения стабильности рабочих параметров работы;
- разработать комплект средств управления и безопасности горелки для перехода на плавное регулирование мощности;
- снизить потребление электроэнергии газовой горелкой за счет применения менее энергоемкого электропривода воздушного вентилятора;
- усовершенствовать огневой узел горелки для снижения содержания оксидов азота и углерода в продуктах сгорания;
- подготовить продукцию к сертификации на соответствие международным стандартам.

Полученные результаты анализа следует использовать не только для формирования оперативных целей в области качества, но и для стратегических, указываемых в документации по СМК, поскольку данные о продукции лидирующих фирм – конкурентов отражают общие тенденции в развитии отрасли в целом.

Список литературы

- 1. С.В. Пономарев, С.В. Мищенко, В.Я. Белобрагин Учебное пособие. Управление качеством продукции. Введение в системы менеджмента качества. –М.: РИА «Стандарты и качество». 2004. 248 с.
 - 2. Официальный сайт фирмы Max Weishaupt GmbH http://www.weishaupt.ru/
 - 3. Официальный сайт ОАО «Завод «Старорусприбор» http://www.staroruspribor.ru/
- 4. Официальный сайт ОАО «Борисоглебский котельно-механический завод» http://www.bkmz.ru/.